
• Ryan Booz

• PGConf.NYC 2023

PostgreSQL & DevOps
Advocate

@ryanbooz

/in/ryanbooz

www.softwareandbooz.com

youtube.com/@ryanbooz

https://twitter.com/ryanbooz
https://www.linkedin.com/in/ryanbooz/
http://www.softwareandbooz.com/
https://twitter.com/ryanbooz

ETL vs ELT

Loading Data

7 SQL/PostgreSQL Features

Community

• External processing of

non-relational data to

create relational data

• Not SQL focused

• Internal processing of

non-relational data to

create relational data

• SQL focused

Extract, Transform, Load Extract, Load, Transform

• External tools could more quickly bring specialized

functionality to data processing

• Databases didn't speak web languages well

• ie. XML or JSON

• Specialized tools = specialized jobs

• Retain transactional consistency and control

• PostgreSQL has a plethora of functions for processing and

transforming data

• Regex

• JSON

• String

• Array and JSON output are particularly useful for processing

• Quickly dump data to tables and keep the schema simple

• Post-process JSON, XML, strings, arrays, etc.

• Use COPY:

• most supported method of getting data in quickly

• CSV or custom delimiters

• Use code:

• work in batches of rows to reduce transaction overhead

• COPY is a PostgreSQL command, not SQL standard

• COPY requires files local to the server

• My examples primarily use psql \copy command

• This streams data from local files to PostgreSQL

STDIN COPY

• Requires correct column order, matching data

types, and clean data (no conversion)

• Options like pgloader overcome some limitations

• pre-checks on certain columns of data

https://pgloader.io/

https://bit.ly/ryan-booz-2023-talks

https://bit.ly/ryan-booz-2023-talks

Create a generated ID for ordering

later if needed

Add a timestamp column if it's

time-series data

Pre-processes what makes

sense, but don't go overboard

create table dec05 (

 id integer generated by default as identity,

 puzzle_input text

);

-- COPY the text into the appropriate columns

\COPY dec05 (puzzle_input) FROM input_05.txt NULL '';

 {
 "data": {
 "author_id": "395950789",
 "created_at": "2022-01-15T03:09:22.000Z",
 "id": "1482188130191122123",
 "text": "Wordle 209

3/6\n\n\u2b1b\u2b1b\u2b1b\ud83d\udfe9\u2b1b\n\u2b1b\u2b1b\ud83d\udfe8\u2b1b\ud83d\udfe8\n\ud83d\udfe9\ud83d\udfe9\ud83d\udfe9\ud8
3d\udfe9\ud83d\udfe9"
 },
 "includes": {
 "users": [
 {
 "id": "395950789",
 "location": "Cali",
 "name": "Hall & Oates Enjoyer",
 "username": "wordlemaster",
 "verified": false
 }
]
 },
 "matching_rules": [
 {
 "id": "1482188147178053123",
 "tag": "wordle"
 }
]
 }

CREATE TABLE tweets_raw(

 ts timestamptz NOT NULL,

 tweet_id bigint NOT NULL,

 tweet_raw JSONB NOT null,

);

CREATE TABLE wordle_tweet (

 ts timestamptz NOT NULL,

 created_at timestamptz NOT NULL,

 author_id bigint NOT NULL,

 author_handle TEXT NOT NULL,

 author_verified bool,

 author_location TEXT,

 tweet_id bigint NOT NULL,

 tweet TEXT NOT null,

 game int NULL,

 guess_total int null

);

• Also called WITH queries

• Reference the output of the query by a unique name

• Prior to Postgres 12 the CTE was materialized first

• PG12+ planner attempts to in-line unless you add

MATERIALIZED

• Multiple CTEs can be chained together, referring to

each other as you go

• Particularly helpful when you'll reuse a query more

than once (readability)

• Name output columns with parenthesis

WITH inventory AS (

 SELECT

 nullif(calories, '')::bigint AS calories,

 count(*) FILTER (WHERE calories is null) OVER (ORDER BY id) AS elf,

 id

 FROM

 dec01

)

WITH inventory AS (

 SELECT

 nullif(calories, '')::bigint AS calories,

 count(*) FILTER (WHERE calories is null) OVER (ORDER BY id) AS elf,

 id

 FROM

 dec01

)

WITH inventory AS (

 SELECT

 nullif(calories, '')::bigint AS calories,

 count(*) FILTER (WHERE calories is null) OVER (ORDER BY id) AS elf,

 id

 FROM

 dec01

)

SELECT sum(calories) as c

FROM inventory

GROUP BY elf

ORDER BY 1 desc;

WITH inventory (calories, elf) AS (

 SELECT

 nullif(calories, '')::bigint,

 count(*) FILTER (WHERE calories is null) OVER (ORDER BY id),

 id

 FROM

 dec01

)

SELECT sum(calories) as c

FROM inventory

GROUP BY elf

ORDER BY 1 desc;

• The SQL language is declarative and batch-based

by implementation

• Recursive CTEs provide iterative processing using

SQL that wouldn't otherwise be possible

• Recursive CTEs allow SQL to be a Turing complete

language

name parent_folder size

Folder_A

Folder_A_1 Folder_A

Folder_B Folder_A

Folder_A_2 Folder_A

Folder_B_1 Folder_B

File_A1.txt Folder_A 1234

File_A2.txt Folder_A 9876

File_B1.txt Folder_B 4567

WITH recursive files AS (

 -- start with a non-recursive, initial query

 SELECT name, parent_folder, SIZE FROM files_on_disk

 WHERE parent_folder IS NULL

)

SELECT * FROM files;

name |parent_folder|size|

-----------+-------------+----+

Folder_A | | |

WITH recursive files AS (

 -- start with a non-recursive, initial query

 SELECT name, parent_folder, SIZE

 FROM files_on_disk

 WHERE parent_folder IS NULL

UNION ALL

 SELECT fid.name, fid.parent_folder, fid.SIZE

 FROM files_on_disk fid

 INNER JOIN files f ON fid.parent_folder = f.name

)

SELECT * FROM files;

name |parent_folder|size|

-----------+-------------+----+

Folder_A | | | <-- Initial query

Folder_A_1 |Folder_A | | <--|

Folder_B |Folder_A | | |

Folder_A_2 |Folder_A | | |- Result of first join

File_A1.txt|Folder_A |1234| |

File_A2.txt|Folder_A |6789| <--|

WITH recursive files AS (

 ...

UNION ALL

 SELECT fid.name, fid.parent_folder, fid.SIZE

 FROM files_on_disk fid

 INNER JOIN files f ON fid.parent_folder = f.name

)

SELECT * FROM files;

• Recursion continues until working table is empty

• Make sure there is an ending point (or add one!)

• Available for many aggregate and window

functions

• An internal predicate for the aggregate as rows

pass through

• Useful in place of pivot-type queries

• Arrays, JSON, Tables

• Arrays and JSON are helpful as intermediate

stores, particularly in recursive queries

• Both are fully supported datatypes in PostgreSQL,

including indexing

• Many functions can output either datatype

• Some functions for converting text

• string_to_array

• regexp_matches

• regexp_split_to_table

• string_to_table

• json_each & json_object_agg

https://bit.ly/ryan-booz-2023-talks

https://bit.ly/ryan-booz-2023-talks

• For every row on the left, execute query on the right

• Output is the product of both sets

• Allows chained queries to "reach back" to previous

result sets for data

• Very useful with Set Returning Functions (SRF)

• Also useful for simplifying SQL at a higher level by

hiding calculations lower

• Reorganize data by returning VALUES

...

select hm.step,

 hm.x, hm.y,

 h.x, h.y,

 t.x, t.y
from tmove tm

 join hmove hm on tm.step+1 = hm.step

cross join lateral

 (VALUES (tm.hx+hm.x, tm.hy+hm.y)) as h(x,y)

cross join lateral

 (VALUES (

 case when abs(h.y-tm.ty) = 2 then h.x

 when abs(tm.tx-h.x) <= 1 then tm.tx

 else tm.tx + hm.x end,

 case when abs(h.x-tm.tx) = 2 then h.y

 when abs(tm.ty-h.y) <= 1 then tm.ty

 else tm.ty + hm.y end

)) t(x,y)

...

...
select hm.step,

 hm.x, hm.y,

 h.x, h.y,

 t.x, t.y

from tmove tm

 join hmove hm on tm.step+1 = hm.step

cross join lateral

 (VALUES (tm.hx+hm.x, tm.hy+hm.y)) as h(x,y)

cross join lateral

 (VALUES (

 case when abs(h.y-tm.ty) = 2 then h.x

 when abs(tm.tx-h.x) <= 1 then tm.tx

 else tm.tx + hm.x end,

 case when abs(h.x-tm.tx) = 2 then h.y

 when abs(tm.ty-h.y) <= 1 then tm.ty

 else tm.ty + hm.y end

)) t(x,y)
...

• Any Set Returning Function can also return the

ordinal value of each row

• Faster than ROW_NUMBER()

• Retains order without an ORDER BY

• Aggregates on steroids that work in context of the

current query row

• Look backwards and forwards

• Powerful data analysis tool that can be challenging

to master…

• …but worth the investment!

• Ranges of dates and numbers

• Multi-range values supported in PostgreSQL 14+

• Can be inclusive or exclusive of each bound

• Many built-in range operators for easy comparison

• Indexable!

• X

• Slack

• Discord

• LinkedIn

• Postgres Weekly Newsletter

• PostgreSQL.life Interviews

• #PGSQLPhriday monthly blog event

• Vik Fearing

• Feike Steenbergen

• David Kohn

• Sven Klemm

• John Pruitt

• Tobias Petry

• Bruce Momjain

• Andreas Scherbaum

• Ryan Lambert

• More, more, more…

🎉 🎉

	Intro slide
	Slide 1
	Slide 2
	Slide 3: github.com/ryanbooz/presentations
	Slide 4: Agenda
	Slide 5
	Slide 6
	Slide 7: A few functions are only included with PostgreSQL >=14
	Slide 8: 01/10 ETL vs ELT
	Slide 9: ETL vs ELT
	Slide 10: Convert non-relational data into relational, tabular data.
	Slide 11: Why Has ETL Been So Popular?
	Slide 12: Iteration is slow
	Slide 13: Keep processing close to the data for faster iteration
	Slide 14: ELT in PostgreSQL
	Slide 15: 02/10 Inserting Data
	Slide 16: Inserting Data
	Slide 17: COPY vs \copy
	Slide 18: COPY Caution
	Slide 19
	Slide 20: Data Import Rules – K.I.S.S
	Slide 21: K.I.S.S. – Advent of Code
	Slide 22: K.I.S.S. – Wordle
	Slide 23: K.I.S.S. – Wordle
	Slide 24: K.I.S.S. – Wordle
	Slide 25: 03/10 Common Table Expression
	Slide 26: Common Table Expression (CTE)
	Slide 27: Common Table Expression (CTE)
	Slide 28
	Slide 29: CTEs
	Slide 30: CTEs
	Slide 31: CTEs
	Slide 32: CTEs
	Slide 33: 04/10 Recursive CTEs
	Slide 34: Recursive CTEs
	Slide 35
	Slide 36
	Slide 37: Recursive CTEs
	Slide 38: Recursive CTEs
	Slide 39: Recursive CTEs
	Slide 40: Recursive CTEs – Caution!
	Slide 41: 05/10 FILTER Clause
	Slide 42: FILTER Clause
	Slide 43: 06/10 Text to…
	Slide 44: Convert text to…
	Slide 45: Arrays, Tables, & JSON
	Slide 46
	Slide 47: 07/10 CROSS JOIN LATERAL
	Slide 48: CROSS JOIN LATERAL
	Slide 49
	Slide 50: CROSS JOIN LATERAL
	Slide 51: CROSS JOIN LATERAL
	Slide 52: CROSS JOIN LATERAL
	Slide 53: 08/10 WITH ORDINALITY
	Slide 54: WITH ORDINALITY
	Slide 55: 09/10 WINDOW Functions
	Slide 56: WINDOW Functions
	Slide 57: 10/10 Range Type
	Slide 58: Range Type
	Slide 59: Bonus Community
	Slide 60: PostgreSQL Community
	Slide 61: PostgreSQL Community
	Slide 62: What Questions do you have?
	Slide 63: 🎉 THANK YOU! 🎉 github.com/ryanbooz/presentations

