S] redgate

O
O
O
C o
O
OO O

Super-powered Data
Transformation with

PostgreSQL

Ryan Booz
PGConf.NYC 2023
o0 8! S
O o 59 4 U0 ¢ ¢ ¢
O Q 0 O 0 0 O S O

S] redgate | About me

Ryan Booz

PostgreSQL & DevOps

Advocate
Y (@ryanbooz
m /in/ryanbooz

Q www.softwareandbooz.com

€ voutube.com/@ryanbooz

Q 04 8! O
a a 0 O Q

https://twitter.com/ryanbooz
https://www.linkedin.com/in/ryanbooz/
http://www.softwareandbooz.com/
https://twitter.com/ryanbooz

github.com/ryanbooz/presentations

S] redgate

Agendo

O1 ETL vs ELT
02 Loading Data

03-10 7 SQL/PostgreSQL Features
Bonus Community

S] redgate

-~ = orexe

9999 P - T - T o=~00C0~
~d 2O O mo. oD
1= o =0 IO OO OO O~ ©O=O=O~
‘Socooco ~00~00000~OmO—0" - e - Tad
o

SC ZOPgVSTEEE- - $ent

@ o~ o0 oD O Do D o Ovo Do,
erozFESR Bols R EeRs mw&mm
Bt HEBT B il o2 X g

bl -4 od V9O OO O~

Pt) e
97°%Q - TEENE, 398:6328
oo e *croa-e

—_——r O
RO 00
- -

e .]ﬂ?@'@»
LOSSOS
S8zO=0

s
.r..,n.m.mm

=
o *
S5O0 ..Mnm.w ..mu.www
Lw--,w
- SEPEsee
5= -+ O O o DO
. ~OOm==~0O
Bisiedih = - - T <
w2 nﬂ
Am&... L «-mw.oo)%-d&lgmmmo.- ORED=29
k- ..m. (O~ OO0 0-0B 000 ~~~00n0Ro%R"
DD 0.::) \..\oo..o..,u'x.-&tlg
B PmreQoRnaEs
R el
T e .
.uowo.r.. - &1
=as QOI%-ID.,! O=o~0r
SR it o SRRERESE et
Sace e —e :
‘.l‘“”..)lo 010“%0]0”&]0 .0'0?@“
@ L] PNV O OC oo &
- O IO OWT ~ 0000~ 0™ 00~ O=0=00
ooco~0oC qq,lqu\d. :l.O‘Q.tQ)OO =11 T
e EBES R8T RRETE:
R~ ——Po=Q VYo Do D oD e
-0 - ~C
-y avad Se. 3 Qo ewrss
- Teeoner I Eeic
OO~ O e ——Eyoe
- -)00 s=moO~ o=
~ o =

|
\|/
ceWes
6%
>0<<<
>>F>p*L
>>0>>[A>*<
>>0>>a>*<<L
>HE3* x>k
>>*>0<<@>0<0<<<
>0<@>>>0>0@>>>0<<<
S I N

W(O|RID|LIE

A DAILY WORD GAME

A few functions are

only included with
PostgreSQL >=14

5] redgate

01/10
ETL vs ELT

S] redgate

ETL vs ELT

Extract, Transform, Load Extract, Load, Transform

« External processing of * Internal processing of
non-relational data to non-relational data to
create relational data create relational data

* Not SQL focused « SQL focused

S] redgate

Convert non-relational data
into relational, tabular data.

=] redgate

Why Has ETL Been So Popular?

» External tools could more quickly bring specialized
functionality to data processing

» Databases didn't speak web languages well
* je. XML or JSON

» Specialized tools = specialized jobs

S] redgate

Y
O
lteration is slow

S] redgate

Keep processing close to
the data for Faster iteration

5] redgate

ELT in PostgreSQL

* Retain transactional consistency and control

» PostgreSQL has a plethora of functions for processing and
transforming data

Regex
JSON
String

« Array and JSON output are particularly useful for processing

S] redgate

02/10
Inserting Data

S] redgate

Inserting Data

e Quickly dump data to tables and keep the schema simple

* Post-process JSON, XML, strings, arrays, etc.

« Use COPY:

« most supported method of getting data in quickly
e CSV or custom delimiters

« Use code:

« work in batches of rows to reduce transaction overhead

S] redgate

COPY vs \copy

 COPY is a PostgreSQL command, not SQL standard
* COPY requires files local to the server
« My examples primarily use psql \copy command

« This streams data from local files to PostgreSQL
STDIN COPY

S] redgate

COPY Caution

» Requires correct column order, matching data
types, and clean data (no conversion)

» Options like pgloader overcome some limitations

« pre-checks on certain columns of data

S] redgate

https://pgloader.io/

© ' FOSDEM

9
Bulk Inserts With PostgreSQL.:
U4+ Methods For Efficient

Data Loading

Postgres Devroom

$ FOSDEM 2023
dh

https://bit.ly/ryan-booz-2023-talks

5] redgate

https://bit.ly/ryan-booz-2023-talks

Data Import Rules - K.1.S.S

Create a generated ID for ordering
later if needed

Add a timestamp column if it's
time-series data

Pre-processes what makes
sense, but don't go overboard

=] redgate

K.I.S.S. - Advent of Code

create table dec05 (
id integer generated by default as identity,
puzzle input text

) ;

-— COPY the text into the appropriate columns
\COPY dec05 (puzzle input) FROM input 05.txt NULL '';

=] redgate

K.I.S.S. - Wordle

"data": {
"author_id": "395950789",
"created_at": "2022-01-15T03:09:22.000Z",
"id": "1482188130191122123",
"text": "Wordle 209
3/6\n\n\u2blb\u2bib\u2blb\ud83d\udfe9\u2bib\n\u2blb\u2blb\ud83d\udfe8\u2blb\ud83d\udfe8\n\ud83d\udfe9\ud83d\udfe9\ud83d\udfe9\ud8
3d\udfe9\ud83d\udfe9"

s
"includes": {
"users": [
{
"id": "395950789",
"location": "Cali",
"name": "Hall & Oates Enjoyer",
"username": "wordlemaster",
"verified": false
}
]
s
"matching rules": [
{
"id": "1482188147178053123",
"tag": "wordle"
}
]

g 1 \—Ug“\e

K.I.S.S. - Wordle

CREATE TABLE tweets raw(
ts timestamptz NOT NULL,
tweet id bigint NOT NULL,
tweet raw JSONB NOT null,

) ;

redgate

K.I.S.S. - Wordle

CREATE TABLE wordle tweet (

ts timestamptz NOT NULL,
created at timestamptz NOT NULL,
author id bigint NOT NULL,
author handle TEXT NOT NULL,
author verified bool,

author location TEXT,

tweet id bigint NOT NULL,

tweet TEXT NOT null,

game int NULL,

guess_ total int null

redgate

03/10
Common Table Expression

=] redgate

Common Table Expression [CTE])

» Also called WITH queries
» Reference the output of the query by a unique name

* Prior to Postgres 12 the CTE was materialized first

PG12+ planner attempts to in-line unless you add
MATERIALIZED

=] redgate

Common Table Expression [CTE])

« Multiple CTEs can be chained together, referring to
each other as you go

 Particularly helpful when you'll reuse a query more
than once (readability)

* Name output columns with parenthesis

S] redgate

SELECT..

CTE_3

CTEs

SELECT
nullif (calories, '')::bigint AS calories,
count (*) FILTER (WHERE calories is null) OVER (ORDER BY id) AS elf,
id
FROM
decO1

redgate

CTEs

WITH inventory AS (
SELECT
nullif (calories, '')::bigint AS calories,
count (*) FILTER (WHERE calories is null) OVER (ORDER BY id) AS elf,
id
FROM
decO1

redgate

CTEs

WITH inventory AS (
SELECT
nullif (calories, '')::bigint AS calories,
count (*) FILTER (WHERE calories is null) OVER (ORDER BY id) AS elf,
id
FROM
decO1

)

SELECT sum(calories) as c
FROM inventory

GROUP BY elf

ORDER BY 1 desc;

redgate

CTEs

WITH inventory (calories, elf) AS (
SELECT
nullif (calories, '')::bigint,
count (*) FILTER (WHERE calories is null) OVER (ORDER BY id),
id
FROM
decO1

)

SELECT sum(calories) as c
FROM inventory

GROUP BY elf

ORDER BY 1 desc;

redgate

0O4/10
Recursive CTEs

S] redgate

Recursive CTEs

« The SQL language is declarative and batch-based
by implementation

* Recursive CTEs provide iterative processing using
SQL that wouldn't otherwise be possible

» Recursive CTEs allow SQL to be a Turing complete
language

=] redgate

WITH RECURSIVE

CTE_]

CTELCTE2)

CTE_3

SELECT.. CTE_3

Folder_A

Folder A 1 Folder_A

Folder B Folder_A

Folder A_2 Folder_A

Folder B 1 Folder B

File_Al.txt Folder_A 1234
File_A2.txt Folder_A 9876
File_B1.txt Folder B 4567

redgate

Recursive CTEs

WITH recursive files AS (
-- start with a non-recursive, 1initial query
SELECT name, parent folder, SIZE FROM files on disk
WHERE parent folder IS NULL

)
SELECT * FROM files;

S] redgate

Recursive CTEs

WITH recursivel|fileslgdS (
-—- start with a nofj-recursive, initial query
SELECT name, parent\ folder, SIZE
FROM files on disk
WHERE parent folder |IS NULL
UNION ALL

SELECT fid.name, fid.parent folder, fid.SIZE

FROM |[files on diskij)yid
INNER JOIN f ON fid.parent folder = f.name

)
SELECT * FROM files;

S] redgate

Recursive CTEs

name |parent folder|size|

——————————— - ¢

Folder A | | | <-- Initial query
Folder A 1 |Folder A | 1<-—|

Folder B | Folder A | |

Folder A 2 |Folder A | - Result of first join
File Al.txt|Folder A | 1234 | |

File A2.txt|Folder A |6789| 14--|

WITH recursive files AS (

UNION ALL
SELECT fid.name, fid.paren
FROM files on disk fid

INNER JOT
)

SELECT * FROM files;

folder, £id.SIZE

fid.parent folder = f.name

jate

Recursive CTEs - Caution!

» Recursion continues until working table is empty

« Make sure there is an ending point (or add onel)

:\\

=] redgate

05/10
FILTER Clause

S] redgate

FILTER Clause

» Available for many aggregate and window
functions

* An internal predicate for the aggregate as rows
pass through

» Useful in place of pivot-type queries

S] redgate

06/10
Text to...

S] redgate

Convert text to...

 Arrays, JSON, Tables

 Arrays and JSON are helpful as intermediate
stores, particularly in recursive queries

» Both are fully supported datatypes in PostgreSQL,
including indexing

» Many functions can output either datatype

S] redgate

Arrays, Tables, &§ JSON

« Some functions for converting text
* string_to_array
* regexp_matches
* regexp_split_to_table
» string_to_table

* json_each & json_object_agg

=] redgate

= We All Deserve Arrays: The Undervalued PostgreSQL Superpower

Scale e

We All Deserve Arrays!
The Hidden Superpower of
PostgreSQL

Ryan Booz

%C 11L°Ox
4 P Pl) 004/50:26 larch 2022 Scroll for details

https://bit.ly/ryan-booz-2023-talks

5] redgate

https://bit.ly/ryan-booz-2023-talks

07/10
CROSS JOIN LATERAL

S] redgate

CROSS JOIN LATERAL

* For every row on the left, execute query on the right
* Qutput is the product of both sets

» Allows chained queries to "reach back" to previous
result sets for data

 Very useful with Set Returning Functions (SRF)

S] redgate

SELECT T.q,Cl.b,CJ2.cFROMT

SELECT string_to_table(T.a, null) D CJ
)
I
SELECT string_to_array(ClJ.q, null] C] ClJ2

CROSS JOIN LATERAL

 Also useful for simplifying SQL at a higher level by
hiding calculations lower

* Reorganize data by returning VALUES

=] redgate

CROSS JOIN LATERAL

select hm.step,
hm.x, hm.y,
h.x, h.y,
t.x, t.y

from tmove tm
join hmove hm on tm.step+l = hm.step
cross join lateral
(VALUES (tm.hx+hm.x, tm.hy+hm.y)) as h(x,y)
cross join lateral
(VALUES (
case when abs(h.y-tm.ty) = 2 then h.x
when abs(tm.tx-h.x) <= 1 then tm.tx
else tm.tx + hm.x end,
case when abs(h.x-tm.tx) = 2 then h.y
when abs(tm.ty-h.y) <= 1 then tm.ty
else tm.ty + hm.y end

)) t(x,y)

redgate

CROSS JOIN LATERAL

select hm.step,
hm.x, hm.y,
h.x, h.y,
t.x, t.y

from tmove tm

join hmove hm on tm.step+l = hm.step

cross join lateral

(VALUES (tm.hx+hm.x, tm.hy+hm.y)) as h(x,y)

cross join lateral

(VALUES (
case when
when
else
case when
when
else

)) t(x,y)

abs(h.y-tm.ty) = 2 then h.x
abs (tm.tx-h.x) <= 1 then tm.tx
tm.tx + hm.x end,

abs (h.x-tm.tx) = 2 then h.y
abs (tm.ty-h.y) <= 1 then tm.ty
tm.ty + hm.y end

=] reggate

08/10
WITH ORDINALITY

S] redgate

WITH ORDINALITY

* Any Set Returning Function can also return the
ordinal value of each row

« Faster than ROW_NUMBER()
 Retains order without an ORDER BY

S] redgate

09/10
WINDOW Functions

S] redgate

WINDOW Functions

» Aggregates on steroids that work in context of the
current query row

 Look backwards and forwards

» Powerful data analysis tool that can be challenging
to master...

e ..but worth the investment!

S] redgate

10/10
Range Type

S] redgate

Range Type

Ranges of dates and numbers

Multi-range values supported in PostgreSQL 14+

Can be inclusive or exclusive of each bound

Many built-in range operators for easy comparison

Indexablel

S] redgate

Bonus
Community

S] redgate

PostgreSQL Community

X

Slack
Discord
_inkedIn

Postgres Weekly Newsletter

PostgreSQL.life Interviews
#PGSQLPhriday monthly blog event

S] redgate

PostgreSQL Community

Vik Fearing

Feike Steenbergen
David Kohn

Sven Klemm

John Pruitt

Tobias Petry

Bruce Momjain
Andreas Scherbaum
Ryan Lambert

More, more, more...

S] redgate

What Questions do you have?

S] redgate

& THANK YOU! &

github.com/ryanbooz/presentations

S] redgate

	Intro slide
	Slide 1
	Slide 2
	Slide 3: github.com/ryanbooz/presentations
	Slide 4: Agenda
	Slide 5
	Slide 6
	Slide 7: A few functions are only included with PostgreSQL >=14
	Slide 8: 01/10 ETL vs ELT
	Slide 9: ETL vs ELT
	Slide 10: Convert non-relational data into relational, tabular data.
	Slide 11: Why Has ETL Been So Popular?
	Slide 12: Iteration is slow
	Slide 13: Keep processing close to the data for faster iteration
	Slide 14: ELT in PostgreSQL
	Slide 15: 02/10 Inserting Data
	Slide 16: Inserting Data
	Slide 17: COPY vs \copy
	Slide 18: COPY Caution
	Slide 19
	Slide 20: Data Import Rules – K.I.S.S
	Slide 21: K.I.S.S. – Advent of Code
	Slide 22: K.I.S.S. – Wordle
	Slide 23: K.I.S.S. – Wordle
	Slide 24: K.I.S.S. – Wordle
	Slide 25: 03/10 Common Table Expression
	Slide 26: Common Table Expression (CTE)
	Slide 27: Common Table Expression (CTE)
	Slide 28
	Slide 29: CTEs
	Slide 30: CTEs
	Slide 31: CTEs
	Slide 32: CTEs
	Slide 33: 04/10 Recursive CTEs
	Slide 34: Recursive CTEs
	Slide 35
	Slide 36
	Slide 37: Recursive CTEs
	Slide 38: Recursive CTEs
	Slide 39: Recursive CTEs
	Slide 40: Recursive CTEs – Caution!
	Slide 41: 05/10 FILTER Clause
	Slide 42: FILTER Clause
	Slide 43: 06/10 Text to…
	Slide 44: Convert text to…
	Slide 45: Arrays, Tables, & JSON
	Slide 46
	Slide 47: 07/10 CROSS JOIN LATERAL
	Slide 48: CROSS JOIN LATERAL
	Slide 49
	Slide 50: CROSS JOIN LATERAL
	Slide 51: CROSS JOIN LATERAL
	Slide 52: CROSS JOIN LATERAL
	Slide 53: 08/10 WITH ORDINALITY
	Slide 54: WITH ORDINALITY
	Slide 55: 09/10 WINDOW Functions
	Slide 56: WINDOW Functions
	Slide 57: 10/10 Range Type
	Slide 58: Range Type
	Slide 59: Bonus Community
	Slide 60: PostgreSQL Community
	Slide 61: PostgreSQL Community
	Slide 62: What Questions do you have?
	Slide 63: 🎉 THANK YOU! 🎉 github.com/ryanbooz/presentations

